Recognizing Textual Entailment Using Description Logic and Semantic Relatedness
نویسنده
چکیده
Recognizing Textual Entailment using Description Logic and Semantic Relatedness Reda Siblini, Ph.D. Concordia University, 2014 Textual entailment (TE) is a relation that holds between two pieces of text where one reading the first piece can conclude that the second is most likely true. Accurate approaches for textual entailment can be beneficial to various natural language processing (NLP) applications such as: question answering, information extraction, summarization, and even machine translation. For this reason, research on textual entailment has attracted a significant amount of attention in recent years. A robust logical-based meaning representation of text is very hard to build, therefore the majority of textual entailment approaches rely on syntactic methods or shallow semantic alternatives. In addition, approaches that do use a logical-based meaning representation, require a large knowledge base of axioms and inference rules that are rarely available. The goal of this thesis is to design an efficient description logic based approach for recognizing textual entailment that uses semantic relatedness information as an alternative to large knowledge base of axioms and inference
منابع مشابه
A Joint Syntactic-Semantic Representation for Recognizing Textual Relatedness
This paper describes our participation in the Recognizing Textual Entailment challenge (RTE-5) in the Text Analysis Conference (TAC 2009). Following the two-stage binary classification strategy, our focus this year is to recognize related Text-Hypothesis pairs instead of entailment pairs. In particular, we propose a joint syntactic-semantic representation to better capture the key information s...
متن کاملRecognizing Textual Relatedness with Predicate-Argument Structures
In this paper, we first compare several strategies to handle the newly proposed three-way Recognizing Textual Entailment (RTE) task. Then we define a new measurement for a pair of texts, called Textual Relatedness, which is a weaker concept than semantic similarity or paraphrase. We show that an alignment model based on the predicate-argument structures using this measurement can help an RTE sy...
متن کاملText Entailment in Semantic Web World
Text Entailment is the concept of determining whether the message conveyed by one sentence is exactly captured by another sentence or not. There have been various approaches discovered to determine the entailment between a pair of sentences. We present a system using RDF (Resource Description Framework) approach that uses online free data available for recognizing textual entailment. There are ...
متن کاملVisual Denotations for Recognizing Textual Entailment
In the logic approach to Recognizing Textual Entailment, identifying phrase-tophrase semantic relations is still an unsolved problem. Resources such as the Paraphrase Database offer limited coverage despite their large size whereas unsupervised distributional models of meaning often fail to recognize phrasal entailments. We propose to map phrases to their visual denotations and compare their me...
متن کاملA Logic-Based Semantic Approach to Recognizing Textual Entailment
This paper proposes a knowledge representation model and a logic proving setting with axioms on demand successfully used for recognizing textual entailments. It also details a lexical inference system which boosts the performance of the deep semantic oriented approach on the RTE data. The linear combination of two slightly different logical systems with the third lexical inference system achiev...
متن کامل